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Spinor chain path integral for the Dirac equation 

Theodore Jacobson 
Center for Relativity, Department of Physics, University of Texas, Austin, Texas 78712, USA 

Received 23 June 1983 

Abstract. A path integral that reduces to Feynman’s checkerboard rule in one space 
dimension is found for the retarded Dirac propagator in three space dimensions. The only 
variables are two-component spinors and a binary chirality variable. No action functional 
is employed. Each spinor together with a chirality corresponds to a spacetime displacement 
during a time E. A sequence of spinors and chiralities determines a polygonal spacetime 
path, and the first and last spinors specify the initial and final spin states. The transition 
amplitude for a sequence is given by (U, I U&-,)( U\-, 1 .  . . I  v2)( v21 v,)(iemIR where U, are 
the spinors, ( 1 ) is the ordinary inner product in spin space, m is the electron mass and 
R is the number of times the chirality switches. Integrating over all sequences corresponding 
to a given displacement yields the Dirac propagator in the limit E + 0. With E > 0 this 
fomulation provides an alternative to the point particle model of the electron. 

In an external electromagnetic potential A, the amplitude for a path C is multiplied 
by exp(-ie IC A, dx”), requiring spacetime coordinates to specify A,(x). The usual per- 
turbation expansion is derived from this rule. Theseresultsareextended to non-Abeliangauge 
potentials. Quantised interaction of particles is not treated. 

1. Introduction and summary 

Since Feynman (1948) introduced the path integral formulation of quantum mechanics 
various techniques for including the spin degree of freedom have been developed. 
Some apply to particles, others to fields, and the spin has been treated with variables 
that are commuting, anticommuting, discrete and continuous. But there is one feature 
almost all these techniques have in common: the spin is treated as a separate degree 
of freedom, in addition to spacetime location (see e.g. Schulman 1981 and references 
therein). 

Due to the nature of the Dirac equation, spin and translation are in fact tied 
together. As a consequence, one can write down path integral formulations of the 
Dirac propagator which involve only spin variables, and it is within this category that 
the formulation of this paper falls. 

The first published work to recognise and exploit the tie between spin and translation 
appears to be that of Riazanov (1958). By introducing into the Dirac equation a fifth 
parameter and working with a cleverly chosen ‘mixed representation’ of spin space he 
was able to write down a path integral in which the paths are sequences of spin states 
which alternate between the two representations. Corresponding spacetime paths on 
a lattice are determined uniquely by a specific rule. The amplitude for a sequence is 
of the form *exp is, where S bears a resemblance to the classical action functional 
for a scalar relativistic particle, and the * sign is determined by another rule. These 
rules have no apparent geometric rationale (in 3 + 1 dimensions), and the dependence 
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on the fifth parameter must be integrated out at the end. Nevertheless, Riazanov gives 
interesting and perspicuous derivations of the non-relativistic and classical limits via his 
formalism. 

Feynman’s checkerboard path integral (Feynman and Hibbs 1965) for the Dirac 
particle in 1 + 1 dimensions is another formulation that exploits the connection between 
‘spin’ and translations. (Actually in one space dimension there is no spin but only 
chirality.) In the checkerboard picture, there is no fifth parameter, and the chiral 
(Weyl) representation is used (implicitly) throughout. The paths are sequences of 
chiralities, right, or left, and correspond directly to paths on a spacetime lattice that 
step to the right or left at the speed of light in the same sequence. The amplitude for 
a path is simply ( i .m)R  where E is the step length, m is the mass, and R is the number 
of bends on the path, i.e. reversals of chirality. 

The appeal of the checkerboard formulation is that it introduces no extraneous 
variables, the correspondence between chirality states and spacetime translations is 
geometrically evident and the amplitude rule is as simple as one could hope for. This 
simplicity and economy is attained by a distancing from the classical formulation, and 
the connection between the path integral formalism and classical mechanics is lost. 

The path integral discussed in this paper constitutes a generalisation of Feynman’s 
checkerboard model to 3 + 1 spacetime dimensions. It is a path integral for the retarded 
(or advanced) propagator of a Dirac particle that employs as variables only 
two-component spinors and a chirality variable indicating right or left-handedness of the 
spinors. The germ of this formulation is contained within the fact that the velocity 
operator (Y for the Dirac particle is proportional to the spin operator when it acts 
separately on right- or left-handed components of the Dirac spinor. This is seen clearly in 
the chiral (Weyl) representation where (Y takes the form 

with U the Pauli matrices. In this sense velocity is equivalent to spin, with an opposite 
association for opposite chiralities. 

Two independent derivations of the path integral are given in 9 9  2.1 and 2.2. 
Equivalence to the Dirac propagator is demonstrated, and properties of the spinor 
chain form are examined. In 0 2.7 the results are extended to a Dirac particle in an 
arbitrary number of spatial dimensions. 

In 9 3 it is explained from a stochastic point of view why in two or more dimensions 
the step speed must be faster than c, and the stochastic approach to the light cone is 
analysed by analogy to an ordinary random walk with drift. The effect of mass is 
described, and the passage to the non-relativistic limit is explained by analogy with a 
transition from a non-Markov to a Markov process description. 

In $ 4  it is shown that the effect of an external gauge potential is to multiply the 
amplitude for each path C by the parallel transport operator 9 exp( -ig lc A, dx’) for 
that path. I t  is surprising that for a particle with spin the contribution of the potential 
still factors out in this manner, so in 9 4.2 we show how to recover the usual perturbation 
expansion in which A,(x) appears only in the combination A(x)= ypA,(x). This 
combination is seen to represent the effect of the gauge potential integrated over the 
cone of (infinitesimal) steps leading away from x toward the future. Finally, in 0 5 we 
speculate on the possiblity of extending the spinor chain formulation to quantised 
interactions, and an alternative to the point particle model of the electron is suggested. 
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2. The spinor chain path integral 

This section begins with a derivation that leads directly from the Dirac equation in 
the chiral (Weyl) representation to the spinor chain path integral. Next, both for 
computational convenience and because it provides insight into the formalism, we 
return to the beginning and derive a more general form of the path integral. The path 
integral is evaluated in terms of the latter form and shown to yield the (retarded) Dirac 
propagator. The spinor chain form is then motivated and derived from the general form. 

2.1. Direct route to the spinor chain path integral 

The free particle Dirac equation yPa,$ = -im $ in the chiral representation 

y ” = (  O -;’) 
-a: 

may be written 

azap$* = i m  (LF (1) 

in units where h = c = 1 .  i,b* are two-component spinors corresponding to the upper 
and lower pairs of components of the Dirac spinor and a’: = (*a, 1)  are 2 x 2 matrices, 
with a the Pauli matrices. The velocity operator for $* is fa, so that we might say 
a’: is the ‘four-velocity operator’. The key to the derivation is a decomposition of a2 
into an overcomplete set of spin projections and it goes as follows. 

To each three-vector n* on the unit sphere is associated a spin projection operator 
P(n*) = ;( 1 + n* - a). Integrating over the sphere we have 

1 1 70 = (dfl/27r)P(n*)n* 

which is verified using dfl  n* = 0 and 5 (df l /4~)n^’n^~ = $ I J .  Now P(n*) may be written 
as I v)( vi where I v) is a unit spinor satisfying P(n*)l v) = I v) or, equivalently, n̂  = ( V I  a/ v). 
Since I (dR/27r)P(n^) = 1 we have the identity 

a? = (dfl/27r)lv)(vlnz I 
with n,=(*3(v la l v ) ,  1). Note that n ,  is not a null vector, so this is not the usual 
association of two-component spinors with null spacetime vectors. Rather, n ,  is a 
displacement during a unit time at speed 3c, relative to the arbitrary fixed inertial 
coordinate system we are employing. 

Consider first the massless case. $* then satisfies the Weyl equation aza,$, = 0. 
Substituting for a’: from (2) and multiplying by E we obtain 

I (dfl/2.rr)lv)(vl(~n’:a,$,) = 0. 

Approximating the derivative by a finite difference 

E n z a p $ ,  = $AX)- $*(x - En,)  + O ( E ~ ) ,  
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the Weyl equation becomes 

+*(XI = 1 ( ~ W ~ . ~ ~ ) I ~ ( V I I C I , ( X  - ~ n * )  +O(E*>. 

Thus according to the Weyl equation, as E + 0 the matrix 1 Y)( V I  serves to propagate 
the spinor amplitude +* from x - n, to x. Hence we conjecture that the retarded 
propagator K’ can be written as limE+o K :  with 

where the integration is over those chains of N = ( t  - ? ’ ) / E  projections satisfying the 
constraints *3& E;”=, ( v i l a l v i )  = x-x ‘  or, equivalently, 

N c ~ v , } ( v , ~ = ( 1 / 2 E ) [ ( t - t r ) * ~ ( X - x ’ )  * a]. 
, = I  

(4) 

Note that the approximation En&a,+ = +(x +En) - +(x) +0( E ’ )  would have led instead 
to the advanced propagator. 

In the massive case the Dirac equation may be written as 

+,(x) = I (dfl/2.rr)lv)(vl[+*(x - En,) +iEmICI,(x - ~ n d l  +O(E’) ,  

since i.sm+T(x) = iEm+,(x - En*)  +O(E’) .  Thus, as in the massless case, as E += 0 the 
matrix lv)(vl propagates the spinor amplitude + from X - ~ n ,  to x. In addition, a 
switch in chirality is accompanied by a factor iEm. Hence we conjecture that, by 
attaching a chirality variable x, = il to each link I Y , ) ( Y ~ ~  in a chain, the retarded 
propagator K X \ , X O  connecting a state of chirality ,yo to one of chirality x N  can be written 
as limE+o [KE]XI .XO with 

[KE(x ,  t ;  x’, f ’ ) l X c X O =  n (dR1/2.rr) l + ) ( ~ N l . .  . Ivl)(vll(iem)R, ( 5 )  I xi. rXk-1 

where the integration/sum is over all sequences of N chiralities and projections 
satisfying the constraint 

and R is the number of chirality switches along the chain (including a possible switch 
from ,yo to x,). 

The results of 00 2.2-2.4 demonstrate that this conjectured representation for the 
propagator is indeed correct. 

2.2. The general form of the path integral 

We now derive a form of the path integral that works with four-component (Dirac) 
spinors, employing an arbitrary representation for the Dirac matrices and an arbitrary 
step speed. 

The Dirac equation for a free particle may be written 

- y a p +  = -im + (7) 
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in units where h = c = 1. 4 is a four-component spinor and the y” are 4 x 4  matrices 
satisfying y” y ”  + y”y”  = 277”’ = 2 diag( 1, - 1, - 1, - 1). In any particular coordinate 
system only four derivatives are involved in (7), so that approximating the derivatives 
d p $  by finite differences would yield an equation relating $(x) to the values of II, at 
four nearby points. 

Our  strategy is to rewrite (7)  so that +(x) is related instead to all the values of 4 
on a small sphere of nearby points at a slightly earlier time. The method is simplest 
to see in three-dimensional vector calculus. Instead of writing the gradient of a function 
4 as dI+, which involves just three derivatives of 4, it may be expressed as a vector 
average of the directional derivatives in all directions by 

d’4(x) = ( 3 / 4 ~ )  d R  n*’n*’ d,+(x) ( 1 )  
where 6 is a unit vector and the integration is over all vectors on the unit sphere. In  
other words, d l+  has merely been multiplied by the resolution of unity 

6” = (31477) dR n ’̂n*’. 5 
In the spacetime case we seek a similar resolution of St;, built with the sphere 

(8) 

where C stands for the normalised integral I d R / 4 ~  over the sphere of unit vectors 6, 
and the primes indicate an  independent sum over the same sphere. (In verifying (8) 
note that C n ”  = &So” and Z nonY = E~S,”.) Inserting (8) in the Dirac equation (7) we find 

of four-vectors of the form n p  =(&, E) (see figure 1). It is easily verified that 

Spy = (-3/ a2)  c n,n + (3/ a’ + 1 / E *) E‘ n n ” 

-im$ = y ”sPva,+ 

= y p  ( ( - 3 / a 2 )  1 n , n y  +(3/a2 + 1 / ~ ’ )  c‘ n: c n u )  d v $  

= c [ ( 1 / ~ ) ~ ~ - ( 3 1 ~ ) y ~ n * , I ~ ~ ~ ~ ~  

- 
Space 

Figure 1. Spacetime diagram of the last three steps in a typical path leading to x. The rim 
of each cone represents a sphere of radius a centred at the spatial position of the vertex. 
The vertex occurs a time E to the future of the rim, so the speed of a step along the cone 
is L Z / E .  The arrow circling each step represents an associated spin whose chirality is 
indicated by the sense of circulation (cf $ 8  2.1, 2.4). 
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(i = 1, 2, 3), which may be rewritten, multiplying both sides by -&yo and using the 
notations yo  = p, yoyl = a’, &/a = 77, as 

i E m p + = x ( 1 + 3 7 7 ( ~ *  n^)(-n”a,+). (9 )  

- n ” a , + ( x )  = + ( x -  n ) -  $ ( x )  +o(E’) (10) 

where it is assumed that O ( E )  = O(a).  x - n stands for the four-vector (x - ka, x o  - E). 

We now approximate the derivative in (9) by a finite difference 

Substituting (10) in (9) we obtain 

( 1  +iEmp)$(x) =x ( 1  +377cu* n^)+(x-  n )  +o(E’) 

or, since ( l - i&mp)(l  +iEmp)= 1 + E 2 m Z =  1 +o(E’), 

$ ( x )  = (1 - iemp) (1 + 3 7 ) ( ~  * n^)+(x - n )  +o(E’). (1 1) 

Equation (1 1) indicates that, according to the Dirac equation, as E + 0 the matrix 

ME(n^)=(1-iemp)(l+377~.n^) (12) 
propagates the spinor amplitude from x - n to x. We call M e ( n )  the propagation matrix. 
Now for each n, $ ( x  - n )  may in turn be expressed as an integral similar to (1 1) over 
a sphere centred at the spatial part of x - n at time 2~ to the past of x,  and so on, so 
that going N steps into the past we obtain an expression for + ( x )  whch is a multiple 
integral over all sequences of steps leading to x (cf figure 1) with an integrand of the 
form 

ME(n^N> * * .  ME(n^l)$(XI). 

The retarded propagator K ( x ,  t ;  x’, t ’ )  can be thought of as the function that results 
from evolving an initial 6 function, which suggests that it might be obtained as limE+o K ,  
with 

N 
(dCLi/4~)A4E(n^N). . . 

where N = ( t  - t‘)/E and the integration is constrained to those sequences of N unit 
vectors satisfying 

N 

n^fl=x-x’. (14) 
, = I  

Whether this representation of K is correct or not depends on how the errors, made 
by neglecting terms of O(E’) at each step, accumulate in the limit E, a + 0, N + CO, with 
NE and a /& held constant. 

In § 2.3 it is seen that this finite difference approximation will converge if and 
only if the step speed a /& is a 3 ’ ” c .  For a /& > 3’”c we recover the Dirac propagator 
by evaluating the path integral ( 1  3) in the limit E + 0. 

2.3. Evaluation of the path integral and equivalence to the Dirac propagator 

The task of performing the integral (13) is similar to that encountered in the problem 
of random flights (see e.g. Chandrasekhar 1943) despite the difference in physical 
interpretation. From a stochastic point of view, the most significant difference is that 
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in our  case it is the step speed U /  E rather than the diffusion constant u2/ E that is held 
fixed as E,  U + 0. Consequently the width of the characteristic Gaussian distribution 
goes to zero in our limit, and all the physics is to be found in the 'drift' that results 
from a correlation in direction for successive steps. Stochastic aspects of our problem 
are discussed further in 9 3. 

The constraint (14) can be incorporated into the measure for the integral ( I  3) by 
use of a 6 function, so that the measure becomes 

Writing the S function as a Fourier integral we have 

/ N  \ 

\ i = l  I 

d3K , i ~ .  (x-x ' )  
= (8r3) - '  

where 

A,(K) = (47r-I d R  e - iK '  & M F ( 6 ) .  (17) J 
Substituitng for M E ( ; )  from ( 1 2 )  in (17) we integrate to obtain 

A,(K) = (1 - iEmp)( j,,(~u) - i3 q j l ( K u ) a  k ) ,  

j , (z)  = sin z / z  = 1 - z 2 / 3 !  + z 4 / 5 !  -. . . , 
j l ( z )  = (sin z - z cos z ) / z 2  = 2 z / 3 !  - 4z3/5! +. , 

(18) 

where K = J / K I J ,  k = K / K  and jo ,  j ,  are spherical Bessel functions of the first kind 

A,(K) is called the ampliJication matrix. 
From (16) we see that the E + 0 limit of K ,  is determined by the E + 0 limit of 

{ A , ( K ) } ~  (with N E  = t - t ' ) .  In order for our finite difference scheme to be stable and  
convergent to the exact propagator it is necessary that the norm of this matrix be 
bounded for all vectors K in the limit E + 0, N + 00. It is here that the restriction on 
the step speed a / &  = 7,' becomes evident. 

Consider first the case m = 0. Then by diagonalising (Y k, A,(K) is diagonalised. 
Since ((U. k ) ' =  I ,  the eigenvalues of (U. k are * l  so the eigenvalues of A,(K) 
are j O ( ~ u ) i i 3 q j I ( ~ u ) ,  with squared modulus , $ ( K U > = ~ $ K U ) + ~ ~ * ~ : ( K U ) =  
1 - (i - q 2 ) ( ~ a ) '  +. . . . Now ( ( K u )  G 1 for all K if and only if q2  G f (to check this note 
that t ( O ) =  1, and for q 2 = f  the derivative of ,$ is negative out to the first zero of j , ,  
which occurs at -4.5; beyond 4.5, crude estimates ensure 5 < I ) .  Thus we have stability 
only if 7 - 1 = a / E z J 5 .  

When the mass is non-zero the same condition for stability results, since the effect 
of the mass term is to add  a matrix of order E which only changes the norm of { A ? ( K ) } ~  
by a bounded factor since NE = t - t'  is fixed. 

The condition q 2  < f is sufficient for K ,  to converge to the exact propagator, as we 
shall now demonstrate. 
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Multiplying out the factors and expanding the Bessel functions in (18) we have 

A,(K)  = 1 - i v a U  * K - i&mp - ( K ~ z ) ~ / 6  + O ( E K a ;  ( K a ) ’ )  

=exp[-ie(a.  K + p m ) - ( f - ~ ~ ) ( ~ a ) ~ / 2  +o(E’; & K a ;  ( ~ a ) ’ ) ]  

so that 

{A,(K)}N = eXp{-iN&((Y * K + p m )  -(f - v ’ ) N ( ~ a ) ~ / 2  + N[O(&’; & K a  ; ( K L Z ) ~ ) ] }  (19) 

If v 2 < f ,  the term in N ( K ~ ) ’  acts as a damping factor and only K ’ S  for which 
~a O( N - ” 2 )  contribute significantly to the integral in (16). (That the higher-order 
terms remain small for all values of K can be seen from the eigenvalues of A,(K).) 
Together with e - O( 1/ N ) ,  this shows that when N is large we may drop the last term 
in the exponential without altering the value of the integral in the limit. 

Substituting for { A , ( K ) } ~  from (19) in (16) and dropping the higher-order terms, 
we obtain for K ,  for small values of E the expression 

&(x, t ;  x‘, t‘) = ( 8 d - I  d 3 ~  eiK’(z-*’) exp[-iNe(a. K + p m ) - ( f -  T , ’ ) N ( K ~ ) ~ / ~ ] .  

(20) 

Noting that the exponential can be written as a product of exponentials, we may invoke 
the convolution theorem for Fourier transforms to write the integral in (20) as the 
convolution of a normalised Gaussian of variance (f - v 2 ) N a 2  with the expression 

i 

K ( x ,  t ;  XI, t ’ )  = (87r3)-’ J d 3 ~  eia . (X-X’)  exp[-i(t - ?’)(a * K + p m ) ] ,  

which is independent of E (except that t - t’ must be an integer multiple of E )  and is 
in fact the exact retarded propagator for the Dirac equation written as a Fourier 
transform. As E + 0, the normalised Gaussian approaches a 6 function. We have thus 
demonstrated that for v 2  < f, K ,  approaches the exact propagator K as E + 0. 

2.4. Spinor chain form of the path integral 

The most significant feature of Feynman’s original path integral formulation of quantum 
mechanics is that it deals directly with probability amplitudes for spacetime processes. 
In this respect our path integral for the Dirac electron (equations (12), (13), (14)) is 
somewhat unsatisfactory, since it determines a matrix of amplitudes. To obtain an 
individual amplitude we must first specify initial and final spin states CLi, CLf ;  then the 
matrix element (GflK(x, x’)lGi) gives the amplitude for a transition from cLi at x’ to Gf 
at x. 

This situation is sometimes explained by saying that the spin is an ‘internal’, 
non-classical degree of freedom which cannot be described in terms of spacetime 
variables. From this point of view there appears to be no alternative but to consider 
paths in the direct product of spacetime with an internal spin space if one wants a 
path integral that deals directly with amplitudes. 

There is an alternative, however. Namely, one may describe the spacetime transla- 
tion degree of freedom in terms of spin. In view of the form of the path integral (13) 
it will be sufficient to describe the unit sphere of spatial vectors in spinor language, 
since any spacetime translation can be built from a sequence of unit vectors. 
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We associate unit vectors with two-component spinors as follows. Each unit vector 
n* determines a unique spin state whose quantisation axis is A. The relation is neatly 
expressed by writing the spin projection operator P(n*) = t( 1 + U * 6) as I v)( vl where 1 v) 
is a normalised eigenvector of P(n*) corresponding to the eigenvalue 1. Equivalently, 
we can write n* = ( V I  U [  v). 

In order to implement this association we use the chiral representation for Dirac’s 
equation (7) since spinors of opposite chiralities must separately be associated with 
spacetime displacements. The chiral representation is given by 

where U = (u.~,  r,., a;) are the Pauli matrices. In  this representation, the zero-mass 
propagation matrix (cf (12)) takes the form 

With 7 =: this may be expressed as 

where 1 v) and 1 Y’) are orthogonal unit spinors (( v I z7) = 0) satisfying 1 v)( vi = +( 1 + U * n*) 
and I Y’)( fiI = +( 1 - U - i). 

The choice 7 = f  satisfies the stability requirement v 2 < f ,  so we know it will yield 
the correct propagator. Thus according to (22) and ( l3 ) ,  the retarded propagator for 
a right-handed Weyl neutrino can be written as the E + 0 limit of 

where the factor 2 in (22) has been absorbed into the measure. The integration is con- 
strained to those chains of N = ( t  - t ’ ) / e  spinor projections satisfying 3~ C;”=, (v,IuI v,) = 
x-x’.  The propagator for a left-handed neutrino is given by the same formula as 
(23), but with the reflected relation between spinors and vectors, so that the chains 
must satisfy - 3 ~  E:, ( v , / u I  v,) = x - x’. We have thus recovered formulae (3) and  (4) 
of § 2.1. 

In the massive case the propagation matrix (1  2) becomes 

> .  
2 (  Iv)(.l i 4 f i ) ( f i l  

iEml v)( V I  1 Y’)( Y’l 

The propagator for this case can be expressed purely in terms of two-component spin 
projections as follows. We attach to each propagation matrix chirality indices x = f 1, 
so that for each pair of values x, x‘, [ME(n^)],, is a 2 x 2  matrix. For example, 
M + -  = 2i~mlY’)( ;I. With this notation, the path integral (13) can be written as 

5 n(dRJ47r )  c ‘ ’ .  [ ~ E c n ^ l ) l x , x ,  
X ? .  ,x\ 

= 5 W d R , / 2 r )  1 IvN)(vhrI . .  . lv l ) (~I I ( iEm)R 
x2. % X \  
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where a tilde should appear over 1 vi)( vi\ if xi = - 1, and R is the number of off -diagonal 
matrix elements, that is, 

The tildes can be eliminated by a change of variables in the integral. For each term 
with xt = -1 we integrate over -h, instead of hi, leaving off the tildes in the integrand 
but reversing the direction of the corresponding unit vectors in the constraint (14). 
With these variables the propagator connecting an initial state of chirality x N  to a final 
state of chirality x is given by the E + 0 limit of 

[KE(X, t ;  x' ,  "+,,, =j w ~ Q , / ~ T )  c I ~ N x ~ N I  . . . ~ v i ) ( v i ~ ( i E m ) ~  (25) 
X 2 ,  .... X h  

where the integration/sum is over all sequences of N = ( t  - t ' ) / E  chiralities and spin 
projections satisfying the constraint 

N 

3 E  c X i ( v i l a / v , ) = x - x ' ,  
,=I 

and R is the number of times the chirality switches along the chain (including a possible 
switch from x N  to x ~ + ~ .  The possiblity of such a final switch does not affect the 
propagator in the limit E -+ 0, however, so if initial-final symmetry is desired in (1 5) 
we may fix x N  and use it as the first index on K ? ) .  We have thus recovered formulae 
(5) and (6) of § 2.1. 

Finally, note that different forms for the mass term in (25) arise from different 
representations of p. For example, if p = (fi A) we have +:Em, with + for left-right 
switches and - for right-left. 

2.5. The spinor measure 

A remarkable feature of the spinor chain form (25) for the free particle Dirac propagator 
is that spacetime coordinates do not enter. The amplitude, the constraint (26) on the 
spinor chains and the measure are all expressed purely in terms of unit two-component 
spinors and chiralities. We now elaborate on this point regarding the measure. 

The rays in spin space comprise @PI ,  the projective space of C2. @PI has the 
topology of a two-sphere and we have made use of a particular correspondence between 
this and the unit sphere in space. If Iv)(vl is the ray determined by a unit spinor 
v = eiS(cos e'''2), the corresponding unit vector h = ( v / a J  v) is given in 
spherical coordinates by (e, 4) .  

In the derivation of 0 2.2, the choice of d0/47r as the measure of one elementary 
step was tacitly motivated by the invariance of the Dirac equation under spatial rotations 
and the normalisation d 0 / 4 ~  = 1. In spin space these rotations correspond to unitary 
transformations, and in fact the measure d R / 2 ~  can be characterised as the unique 
unitary-invariant measure on @PI satisfying X,,I lv)( V I  = 1. It is thus not necessary 
to refer to properties of spacetime to motivate the choice of d0/2n-. One need only 
demand invariance under unitary transformations, a natural requirement since it is 
precisely these transformations that preserve the amplitude for a spin chain. 

e-"", sin 
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Finally we mention that since unit spinors related by a simple phase factor 
determine the same projection, one may divide the measure by 27r and integrate over 
unit spinors rather than rays. 

2.6. Geometrical interpretation of the spinor amplitude 

The amplitude for a spinor v to be followed by v’ in the path integral (25) is (v’l v). 
We shall now demonstrate that (v’l v)= cos f w  e”, where w is the angle between 
the corresponding unit vectors and 5 is a non-geometrical phase angle. This result 
will be used in 0 3 where we explore the analogy of propagation of a Dirac particle 
to a random walk with drift. 

The squared modulus I (  v’ I v)l’ is given by ( v ’ /  v ) ( v  I v‘) = (v‘I t( 1 + n̂  - a)l v’) = 

f( 1 + n̂  n^’) = f( 1 +cos w )  = cos’ f w ,  where w is the angle between the unit vectors n̂  = 
( v l a l v )  and n^’=(v‘lalv’) .  Thus (v’l v) has the form cos &JJ eii for some 5. Since 6 
depends on the overall phase of the spinors it does not appear to have a geometrical 
interpretation. Moreover, suppose we fix the phase using a standard parametrisation 
v =(cos e-’”’, sin 40 ei6’*) for the spinors. Then we have 

( v ’ l  v )  = cos cos $0 e-”4’-+h’2 +sin sin 40 e l ( 6 ’ - + 1 / 2  

When 4’ = 4, (v’1 v) = cos +(e‘ - 0) = cos &J, so that l =  0. In general, 5 can be written 
in terms of the spherical angles 0, 4, 6’, 4 ’ ;  it is not invariant under rotations and is 
a discontinuous function of the unit vectors n̂ , n^’ as can be seen by choosing special 
values for the angles. 

2.7. The Dirac particle in d space dimensions 

Insight into our formalism is obtained by exmaining also the cases of one and two 
spatial dimensions, for which we now prepare the way. The derivation of the path. 
integral in § 2.2 can be repeated for the case of an arbitrary space dimensionality d. 
There results the propagation matrix (cf (12)) 

ME(n^)=(l-iemp)(l  + d v a * n ^ ) .  (27) 

In one spatial dimension we have for the massless amplification matrix (cf (17)) 

A ( K )  = i 1 e-iKne( 1 + van) = cos ~a - i v a  sin ~ a .  
n = * I  

In two dimensions we have 

A(K)  = (27r)-’ J d 4  e- iK‘  ”( 1 $ 2 7 ) ~ ~  * n )̂ = J O ( ~ a )  - i 2 v J , ( ~ a ) a  k, 
0 

where K = l j ~ l l  and Jo, J ,  are cylindrical Bessel functions of the first kind, with the 
expansions 

Jo(z)= 1 -z2/4+.  . . , J1(z)=z/2-z3/16+.  . . 
(For a space of arbitrary dimension d 3 2 the result is 
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where v = :( d - 2) and J, J, , ,  are Bessel functions of the first kind. The term in (Y is 
obtained by differentiating the first term with respect to K and using a recursion 
relation for the Bessel function.) 

By an analysis similar to that which follows (18) we see that the stability condition 
is 7 ’ s  1 for d = 1 and 7 ’ s ;  for d = 2. The evaluation of the path integral is slightly 
different in the one-dimensional case, since the contribution to the integral correspond- 
ing to (16) comes not only from ~a near zero but also from near integer multiples of 
T. This can be seen from the squared modulus of the eigenvalues, cos’ ~a + 7* sin’ ~ a ,  
and is connected to the fact that in one dimension sequences of unit steps to the right 
or left span a lattice, while in two or higher dimensions any point can be reached by 
unit steps. 

As in the three-dimensional case, the path integral can be written in a special form 
provided one chooses 7 and the representation of the Dirac matrices appropriately. 
Now one choice for p and LY is simply the restriction of the Weyl representation (21), 
e.g. for d = 1 we have { p, a,} and for d = 2, { p, ax, a,.}. With this representation and 
7 = l/d, the spinor chain form (25) for the path integral can be taken over directly, 
with the allowed spinors restricted to {( 1,  0), (0, 1)) for d = 1 and {2-’’2(e”6’2, ei”’): 0 s 
4 < 2 ~ )  for d = 2. Different values of 7 = & / a  specify different step speeds, so that 
the lower-dimensional cases are not simply obtained by restricting the spinors to some 
subset of spin space. The connection between spinors and spacetime vectors must also 
be modified. 

In one space dimension the spinors play no role, since unless the same spinor 
appears at every step the amplitude will be zero. Thus for a one-dimensional Dirac 
particle, the only freedom is the chirality at each step, which is equivalent to the direction 
of motion. Furthermore, the steps are the speed of light ( 7  = l ) ,  so we have recovered 
Feynman’s checkerboard rule (Feynman and Hibbs 1965). Strictly speaking, we really 
have two copies of Feynman’s rule, one for the spinor (1 0) and one for (0 1 ). To obtain 
an irreducible representation in one space dimension one should represent p and CY with 
2 x 2  rather than 4 x 4  matrices. For example, p = ux and a = u, will do the job. 

In two dimensions the inner product of two spinors is just cos[$( 4’ - 4)], where 4 ‘  and 
4 are the angles defining the corresponding unit vectors. It is also possible to use a 
two-component wavefunction in two spatial dimensions by choosing for example the 
2 X 2 matrix representation /3 = u, and (Y = ( ux, U,). With this representation of course 
the spinor chain form (25) is not correct, since the mass term acts within the single 
two-component spin space. 

3. Stochastic aspects of the path integral 

An initially surprising feature of the path integral (13) is that the minimum allowable 
step speed is actually greater than the speed of light when the space has more than 
one dimension. Two questions are asking to be answered; ‘Why cannot the steps be 
at the speed of light?’ and ‘Given that the steps are faster than light, how does it 
happen that the maximum speed of propagation is nevertheless the speed of light?’. 
In § §  3.1-3.3, we attempt to answer these questions by examining some stochastic 
aspects of the path integral. Section 3.4 discusses the effect of mass and the passage 
to the non-relativistic limit. 
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3.1. One dimension 

In one spatial dimension the massless propagation matrix (cf (27)) with cy = U, takes 
the form 

0 1 - ~ n  

If p and q are the number of steps to the right and 
displacement of M = p - q steps in a total of N = p + q 

( ;)(T)p(T)q. 
left, the amplitude for a net 
steps is given by 

The two signs correspond to ‘right- and left-handed’ particles. The stability condition 
is v2  s 1 so we may choose 7 = I ,  which shows immediately that a massless right(1eft)- 
handed particle can move only at the speed of light to the right(left), since if q # 0 
( p  # 0 )  the amplitude is zero. 

I t  is instructive to see how things work out if we choose 7 < 1, corresponding to 
steps faster than light. Then (28) is identical to the probability distribution for a 
one-dimensional random walk with drift. In a statistical mechanics application, the 
drift might arise from an external field, for example, and take the form 7 = alao where 
a is the step length and 5 0  is a constant with the dimension of length. The distribution 
after N steps would be approximately described by a Gaussian of width 
drifting at a speed T ~ / E  = D/ao ,  where D = a 2 / &  is the (fixed) diffusion constant. In 
the case of the Dirac particle on the other hand, the step speed a / &  = c / q  > c fixed, 
the drift speed is T a l &  = c, and the width of the Gaussian goes to zero in the limit E, 

a -$ 0 since N = ( t  - t’)/ E.  

A partial answer can now be given to the second question asked at the beginning 
of this section. although there is a greater amplitude to continue in the same direction 
on a given path, there are so many more paths with more turns that the peak of the 
distribution (28) occurs for smaller values of M. It is a balancing of two exponential 
factors that picks out the form of the drifting distribution. Then, in the particular limit 
involved in our path integral, the distribution becomes a S function drifting at the speed of 
light. This is only a partial answer since it ignores the features that arise in aspace of higher 
dimension. 

3.2. Two and three dimensions 

In a space of two or more dimensions the particle has a continuous infinity of unit 
vectors to choose from at each step, and all but possibly one of these have a non-zero 
amplitude of order unity to follow the previous step. This situation is analogous to 
the one-dimensional case with 7 < 1,  so it is plausible that in the limit of infinitesimal 
steps there is a vanishing amplitude to continue in a straight line at the step speed. I t  
seems therefore that one does not have have the option to choose steps at the speed 
of light. As a matter of fact, the stability of our finite difference scheme requires that 
the step speed be at least 2’12c or 3”*c in a space of two or three dimensions respectively 
(cf § §  2.3, 2.7). 

Other than the stability calculation itself one can offer the following quasi-physical 
explanation for the value of the minimum step speed d ‘12c. In the usual theory of the 
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Dirac electron, the velocity operator is ca, so that the expectation value of the squared 
speed in any state rF, is given by 

We emphasise that this is a standard quantum mechanical calculation, not related to 
our path integral formulation. The result (29) has often been either regarded as an 
embarassment or disregarded on the basis that c a  is not the time derivative of the 
‘relevant’ position operator. In the present context, however, the operator x whose 
eigenvalues are the coordinates of spatial points is the relevant position operator, and 
(29) makes it plausible that any stochastic process underlying the Dirac equation must 
consist of steps of speed at least d1’2c-for otherwise how could the mean square 
speed be dc2? 

3.3. Spinor chain drgt mechanism 

As in the one-dimensional case with 7 < 1 a drift mechanism is evidently operating 
and again there is a stochastic approach to the light cone. Let us examine the drift 
mechanism in the spinor chain form of the path integral, with step speeds c, 2c and 
3c in 1, 2 and 3 spatial dimensions respectively. 

where w is the angle between the corresponding unit vectors and 5 is a non-geometrical 
phase angle (see discussion in § 2.6). The factor cos io is equal to unity when the 
corresponding unit vectors are parallel and zero when they are antiparallel (o = n). 
Hence there is a correlation in direction for successive steps and this produces the drift. 

In one dimension only two directions are available so that cos $J is either zero or 
unity. There is complete correlation and since each step is at the speed of light the 
‘drift’ is at that speed. 

To ascertain the drift in two or three dimensions one may calculate the displacement 
expected after one step. According to the basic rule of quantum mechanics I( v’I v)12 = 
cos’io gives the probability for v’ to succeed v. Thus if the initial step in three 
dimensions is parallel to the unit vector i the expected displacement during the next 
step is given by 

The amplitude for a spinor v to be followed by v’ has the form ( U ’ ]  v) = cos p I e i i  , 

(The probability function cos’ 48 is normalised on the sphere with the measure dR/2?r. 
This is precisely the measure of one step in the path integral (cf § 2.5).) 

Since a = 3 c ~ ,  and the duration of one step is E ,  it follows that the expected 
displacement or drift is in the i direction at the speed of light. A similar computation 
shows that also in two dimensions the drift is at the speed of light. This is not the 
whole story, however. By itself, the weighting toward the forward direction of the 
previous step is insufficient to produce a long-range correlation. The phase eir in the 
transition amplitude ( v’I v) = cos io e“ plays a crucial role. Furthermore, the behaviour 
in two and three dimensions is evidently qualitatively different. Indeed, the retarded 
propagator for the massless wave equation in a space of even dimension is non-zero 
in the interior of the forward light cone, whereas in a space of odd dimension 3 3  it 
is non-zero only on the light cone (see e.g. Courant and Hilbert 1962). 
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3.4. Mass and the non-relativistic limit 

The path integral (25) shows that there is an amplitude iem to switch chirality at each 
step of a spinor chain. By a chirality switch the electron can reverse its direction of 
motion while repeating the same spinor. The persistence in spatial direction for 
successive steps is thus destroyed every time the mass term acts. 

From the Dirac equation Hamiltonian form, id,$ = (a * p + Pm)$, it is seen that for 
non-relativistic momenta p<< m, the time scale for one chirality switch is A t  - l / m  = 
h/mc2. In path integral language we may say that in between switches the electron 
propagates as if it were massless, travelling at the speed of light. It is thus plausible 
that in the non-relativistic limit an electron may be described by a sequence of 
uncorrelated steps of duration A t  and speed Ax/At = c. This leads to a picture of a 
‘diffusing’ particle with ‘diffusion constant’ ( A x ) ~ / A ~  - h/  m, which is consistent with 
the usual non-relativistic path integral or Schrodinger equation. This stochastic account 
of the passage to the non-relativistic description (in the one-dimensional case) is 
discussed in Jacobson and Schulman (1984). 

4. Propagation in an external gauge potential 

Replacing the derivative a, in the Dirac equation by a gauge covariant derivative 0, 
one produces an equation governing the motion of an electron (or a gauge multiplet) 
minimally coupled to a gauge potential. By modifying the derivation of 0 2.2 we obtain 
the form of the path integral for such situations. It turns out that the effect of a gauge 
potential is simply to multiply the amplitude for each path by the transport operator 
8 exp(-ig jcA, dx,) for that path, and from this rule we derive a perturbation 
expansion for the propagator that agrees with the usual formula. 

4.1. Electromagnetic potential 

In the presence of an electromagnetic potential A,, the Dirac equation (7) becomes 

y”D,y = -im (I 

with 0, = 8, +ieA,; e is the electronic charge. Following the steps leading from (7) 
to (9) one obtains 

i&mp$ = c ( 1  + 3  ~a * A)( - n  ”D,$). (30) 

Now we make the gauge covariant finite difference approximation 

-n”D,$ = exp (-ie 1’ A, dx’) $(x - n) - $(x) SO(&’). 
x--n 

Substituting (3 1) in (30) we obtain 

$(XI = ( 1  -i&mp) c ( 1 + 3 t 7 a .  n*) exp ( -le ’ j:-H A, d x l )  $(x - n) + O ( E ~ ) .  (32) 

Equation (32) indicates that according to the Dirac equation, as E -f 0 the matrix 
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propagates the spinor amplitude from x to x +(ha, E )  in the presence of the electromag- 
netic potential A,. Assuming the exponential term in A ,  does not affect the stability 
of our finite difference scheme, it follows from the results of 9 2.3 that when 7’ < f the 
propagator K A  in the presence of the potential is given by limE+o K t  with 

K$(x, x’) = n ( d R , / 4 r ) M $ ( x  - nN, iN) .  . . Mt(x’ ,  i 
= J II(dRi/4r)M,(n*,). . . ~ ~ ( n * ~ )  exp( -ie J A, dx’) 

C 
(34) 

where we have combined all the phase factors into one integral of A, over the polygonal 
spacetime path C connecting (x’, t ’ )  to (x, t )  via the vertices (x’, t ’ > + X { = ,  (;,a, E )  for 
j s N = ( t  - t ’ ) /  E .  In spinor chain language, the propagator connecting states of definite 
chirality is given (cf (25)) by 

[Kf]x,xo= n ( d f l , / 2 r )  Iv , , ) (vNl . .  . Iv,)(v,/(iem)R exp -ie A, dx”  . 

(35) 

The effect of an external electromagnetic potential is thus simply to multiply the 
amplitude for a given path by the phase change along the path. This result stands in 
sharp contrast to the usual treatment of a Dirac electron propagating in a potential 
(see, however, Feynman (1950, § 6) for a related observation). Commonly, the propa- 
gator K A  is defined as a solution to the equation [ir”(a, +ieA,)-m]KA(x, x’)= 
iy0a4(x,x’). The important difference is that A,  appears only in the combination 
?’”A, = A ,  which is also the case in the usual perturbation expansion for K A 

KA(x ,  x’) = K(x, x’) + 

X I .  , X \ -  ( I c  ) 

d4x1 K(x, xl)[-ieyoA(x,)]K(x,,  x )  J 
+ . . . .  (36) 

We shall now see how the expansion (36) arises from the path integral (34) or (35). 

4.2. Perturbation expansion 

The propagation matrix (33) may be expanded in E as 

M$(x, A ) =  ME(A)[l - ieA,(x)np’]+O(~*).  (37) 

Inthe E + Olimit thetermO( E ’ )  will contributenothing,andwedropit. Theexpression for 
K (cf (34)) is then a sum of products of N = ( t  - t o / &  matrices of the form (37), and we 
may break up this sum into partial sums K = KLo) + Kk” + K r ’  +. . . , so that the 
potential appears exactly p times in each summand of Kzp’. K?’ is just the free 
propagator, K,. 

Consider all the summands in K‘,” for which the potential acts at the spacetime 
point xI (see figure 2 ) .  We can perform the sum over these terms to obtain 

c K(x, XI +(& &))M,(n*)[-ieA,(xl)n,lK(xl, x’) 
ri 
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Figure 2. Spacetime diagram of three paths contributing to first-order scattering from an 
external gauge potential A, at x,. Expanded view shows the cone of steps leading away 
from x , .  Summing the propagation matrix M c ( i ) P  exp(-ig j t i+’’ A, dx,) over this cone 
yields 1 - isgyo&x,) ,  giving rise to the usual perturbation expansion. 

since the sum over paths from x’ to x I  just gives the free propagator, and the same 
for paths from x I  +(L, E )  to x. There remains a single sum (integral) over the cone 
of steps leading away from x,.  Since K(x, xI +(&A, E ) ) =  K(x, x,)+O(E),  and 
[-ieA,(x,)n”] is already O(E),  we may factor the last propagator out of the sum 
dropping the higher-order terms, to obtain 

K(x,  X I ) (  $. Wn*)[-ieA,(x,)n”’l K(x , ,  x’). ) (38) 

Now Xi, ME(6)n” = ( 1  -i~Emp)X;(1+377(~- ;)(&A, E ) =  ~ y ’ y @  +O(E’) ,  so that (38) 
becomes 

K (x, x, )[ - i eEyoA(xl 1-1 K (xI , x ’1. 
Finally we integrate over the positron of the spacetime point x I  to obtain 

(the sum over times being treated as an integral with E playing the role of dt). The 
higher-order terms KLp) are similarly obtained, and by this procedure the usual perturba- 
tion expansion (36) is recovered. 

4.3. Non-Abelian gauge potential 

Everything we have done can be directly extended to the case where the Dirac 
wavefunction $ is a multiplet of n four-component spinors transforming under an 
n-dimensional unitary representation of a non-Abelian internal symmetry group G. 
The Dirac equation becomes 

y”D*$ = -im $ 

with D, = a, +igA,, where the gauge potential A,(x)  is now a matrix in the Lie algebra 
of the representation of G. In the absence of interaction each of the n spinors in $ 
independently satisfies the ordinary Dirac equation, while an external gauge potential 
‘rotates’ the n-tuple as the particle propagates. A calculation virtually identical to the 
electromagnetic case shows that the propagator can be written as a path integral in 
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the form limc+o K t  with 

Kt(x,  x‘)= 5 II(dfli/47r)M,(n*,). . . ME(hI)8 exp( -ig A,  dx,) (39) 

where M E ( ; )  is as in (12) (multiplied by the identity in the n-dimensional ‘internal’ 
space) and 8 exp(-ig jc A ,  dx,) is, in geometrical terms, the path-ordered parallel 
transport operator that carries an n-tuple along the path C from x’ to x. The amplitude 
for a transition from +i to +f along C is thus obtained by first rotating +bi to +/= 
9 exp(-ig I C  A ,  dx”)& and then computing the amplitude for a transition 9: + as 
in the free case. +: transforms under gauge transformations as an n-tuple at x, which 
neatly shows that the transition amplitude is gauge invariant. Finally, the perturbation 
expansion for K A arises in precisely the same manner as in the electromagnetic case. 

5. Discussion 

It has been shown that two-component spinors and a binary chirality variable suffice 
to describe the propagation of a free Dirac particle. The process of propagation in 
spacetime is reduced to finite concatenations of spin states, the amplitude rule and 
the spacetime displacement being expressed purely in terms of the quantum algebra 
of spinors (two-dimensional Hilbert space). 

To the pregeometrically inclined this is a striking and suggestive observation. If  
the duration E of one spinor link is taken to be a small but finite quantum of time, all 
spinor chains will have a finite number of links. Assuming it could be extended to 
deal with quantised interactions, the spinor chain language would thus provide an 
alternative to the problematic concept of point particle and avoid the attendant 
divergences of ordinary continuum quantum field theory?. 

With E > 0 the formalism requires a new interpretation, since unitarity on the usual 
electron Hilbert space Xspace x Xspin is lost. In Jacobson (1983) a provisional interpreta- 
tion for E > 0 is established, and the emergence of unitarity on x %spin in the 
limit E + 0 is analysed. 

Interaction with an external gauge potential has been treated, but of course it 
requires explicit use of spacetime coordinates to specify the potential. The challenge 
is thus to describe quantised interactions in the spinor chain language with E > 0, the 
scale of E being set ultimately by experiment. In processes which are purely electromag- 
netic, QED has been confirmed down to scales -h/  150 GeV - 10-l6 cm/ c (see Branson 
1981). It is not clear however whether this implies that E must necessarily be less than 

cm/ c, since one could imagine that by selectively looking at purely electromagnetic 
processes QED would continue to give good results below the scale of E.  Care needs 
to be taken in interpreting experiments, since taking E > 0 does not involve giving the 
electron any additional structure. 
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